Paper ID: 2401.15863

Importance-Aware Adaptive Dataset Distillation

Guang Li, Ren Togo, Takahiro Ogawa, Miki Haseyama

Herein, we propose a novel dataset distillation method for constructing small informative datasets that preserve the information of the large original datasets. The development of deep learning models is enabled by the availability of large-scale datasets. Despite unprecedented success, large-scale datasets considerably increase the storage and transmission costs, resulting in a cumbersome model training process. Moreover, using raw data for training raises privacy and copyright concerns. To address these issues, a new task named dataset distillation has been introduced, aiming to synthesize a compact dataset that retains the essential information from the large original dataset. State-of-the-art (SOTA) dataset distillation methods have been proposed by matching gradients or network parameters obtained during training on real and synthetic datasets. The contribution of different network parameters to the distillation process varies, and uniformly treating them leads to degraded distillation performance. Based on this observation, we propose an importance-aware adaptive dataset distillation (IADD) method that can improve distillation performance by automatically assigning importance weights to different network parameters during distillation, thereby synthesizing more robust distilled datasets. IADD demonstrates superior performance over other SOTA dataset distillation methods based on parameter matching on multiple benchmark datasets and outperforms them in terms of cross-architecture generalization. In addition, the analysis of self-adaptive weights demonstrates the effectiveness of IADD. Furthermore, the effectiveness of IADD is validated in a real-world medical application such as COVID-19 detection.

Submitted: Jan 29, 2024