Paper ID: 2401.16694

etuner: A Redundancy-Aware Framework for Efficient Continual Learning Application on Edge Devices

Sheng Li, Geng Yuan, Yawen Wu, Yue Dai, Tianyu Wang, Chao Wu, Alex K. Jones, Jingtong Hu, Yanzhi Wang, Xulong Tang

Many emerging applications, such as robot-assisted eldercare and object recognition, generally employ deep learning neural networks (DNNs) and require the deployment of DNN models on edge devices. These applications naturally require i) handling streaming-in inference requests and ii) fine-tuning the deployed models to adapt to possible deployment scenario changes. Continual learning (CL) is widely adopted to satisfy these needs. CL is a popular deep learning paradigm that handles both continuous model fine-tuning and overtime inference requests. However, an inappropriate model fine-tuning scheme could involve significant redundancy and consume considerable time and energy, making it challenging to apply CL on edge devices. In this paper, we propose ETuner, an efficient edge continual learning framework that optimizes inference accuracy, fine-tuning execution time, and energy efficiency through both inter-tuning and intra-tuning optimizations. Experimental results show that, on average, ETuner reduces overall fine-tuning execution time by 64%, energy consumption by 56%, and improves average inference accuracy by 1.75% over the immediate model fine-tuning approach.

Submitted: Jan 30, 2024