Paper ID: 2401.17916
Source-free Domain Adaptive Object Detection in Remote Sensing Images
Weixing Liu, Jun Liu, Xin Su, Han Nie, Bin Luo
Recent studies have used unsupervised domain adaptive object detection (UDAOD) methods to bridge the domain gap in remote sensing (RS) images. However, UDAOD methods typically assume that the source domain data can be accessed during the domain adaptation process. This setting is often impractical in the real world due to RS data privacy and transmission difficulty. To address this challenge, we propose a practical source-free object detection (SFOD) setting for RS images, which aims to perform target domain adaptation using only the source pre-trained model. We propose a new SFOD method for RS images consisting of two parts: perturbed domain generation and alignment. The proposed multilevel perturbation constructs the perturbed domain in a simple yet efficient form by perturbing the domain-variant features at the image level and feature level according to the color and style bias. The proposed multilevel alignment calculates feature and label consistency between the perturbed domain and the target domain across the teacher-student network, and introduces the distillation of feature prototype to mitigate the noise of pseudo-labels. By requiring the detector to be consistent in the perturbed domain and the target domain, the detector is forced to focus on domaininvariant features. Extensive results of three synthetic-to-real experiments and three cross-sensor experiments have validated the effectiveness of our method which does not require access to source domain RS images. Furthermore, experiments on computer vision datasets show that our method can be extended to other fields as well. Our code will be available at: https://weixliu.github.io/ .
Submitted: Jan 31, 2024