Paper ID: 2401.18034
Paramanu: A Family of Novel Efficient Generative Foundation Language Models for Indian Languages
Mitodru Niyogi, Arnab Bhattacharya
We present "Paramanu", a family of novel language models (LM) for Indian languages, consisting of auto-regressive monolingual, bilingual, and multilingual models pretrained from scratch. Currently, it covers 10 languages (Assamese, Bangla, Hindi, Konkani, Maithili, Marathi, Odia, Sanskrit, Tamil, Telugu) across 5 scripts (Bangla, Devanagari, Odia, Tamil, Telugu). The models are pretrained on a single GPU with context size of 1024 and vary in size from 13.29 million (M) to 367.5 M parameters. We proposed a RoPE embedding scaling method that enables us to pretrain language models from scratch at larger sequence length context size than typical GPU memory permits. We also introduced a novel efficient Indic tokenizer, "mBharat", using a combination of BPE and Unigram, achieving the least fertility score and the ability to tokenize unseen languages in both the same script & Roman script. We also proposed and performed language-specific tokenization for multilingual models & domain-specific tokenization for monolingual models. To address the "curse of multilinguality" in our mParamanu model, we pretrained on comparable corpora based on typological grouping within the same script. Our findings show a language transfer phenomenon from low-resource to high-resource languages within languages of the same script & typology. Human evaluations for open-ended text generation demonstrated that Paramanu models outperformed several LLMs, despite being 20 to 64 times smaller. We created instruction-tuning datasets & instruction-tuned our models on 23,000 instructions in respective languages. Comparisons with multilingual LLMs across various benchmarks for natural language (NL) understanding, NL inference, & reading comprehension highlight the advantages of our models; leads to the conclusion that high quality generative LM are possible without high amount of compute power & enormous number of parameters.
Submitted: Jan 31, 2024