Paper ID: 2402.00068
Adapting Amidst Degradation: Cross Domain Li-ion Battery Health Estimation via Physics-Guided Test-Time Training
Yuyuan Feng, Guosheng Hu, Xiaodong Li, Zhihong Zhang
Health modeling of lithium-ion batteries (LIBs) is crucial for safe and efficient energy management and carries significant socio-economic implications. Although Machine Learning (ML)-based State of Health (SOH) estimation methods have made significant progress in accuracy, the scarcity of high-quality LIB data remains a major obstacle. Existing transfer learning methods for cross-domain LIB SOH estimation have significantly alleviated the labeling burden of target LIB data, however, they still require sufficient unlabeled target data (UTD) for effective adaptation to the target domain. Collecting this UTD is challenging due to the time-consuming nature of degradation experiments. To address this issue, we introduce a practical Test-Time Training framework, BatteryTTT, which adapts the model continually using each UTD collected amidst degradation, thereby significantly reducing data collection time. To fully utilize each UTD, BatteryTTT integrates the inherent physical laws of modern LIBs into self-supervised learning, termed Physcics-Guided Test-Time Training. Additionally, we explore the potential of large language models (LLMs) in battery sequence modeling by evaluating their performance in SOH estimation through model reprogramming and prefix prompt adaptation. The combination of BatteryTTT and LLM modeling, termed GPT4Battery, achieves state-of-the-art generalization results across current LIB benchmarks. Furthermore, we demonstrate the practical value and scalability of our approach by deploying it in our real-world battery management system (BMS) for 300Ah large-scale energy storage LIBs.
Submitted: Jan 30, 2024