Paper ID: 2402.00760
EuroPED-NN: Uncertainty aware surrogate model
A. Panera Alvarez, A. Ho, A. Jarvinen, S. Saarelma, S. Wiesen, JET Contributors, the AUG team
This work successfully generates an uncertainty-aware surrogate model of the EuroPED plasma pedestal model using the Bayesian neural network with noise contrastive prior (BNN-NCP) technique. This model is trained using data from the JET-ILW pedestal database and subsequent model evaluations, conforming to EuroPED-NN. The BNN-NCP technique has been proven to be a suitable method for generating uncertainty-aware surrogate models. It matches the output results of a regular neural network while providing confidence estimates for predictions as uncertainties. Additionally, it highlights out-of-distribution (OOD) regions using surrogate model uncertainties. This provides critical insights into model robustness and reliability. EuroPED-NN has been physically validated, first, analyzing electron density $n_e\!\left(\psi_{\text{pol}}=0.94\right)$ with respect to increasing plasma current, $I_p$, and second, validating the $\Delta-\beta_{p,ped}$ relation associated with the EuroPED model. This affirms the robustness of the underlying physics learned by the surrogate model. On top of that, the method was used to develop a EuroPED-like model fed with experimental data, i.e. an uncertainty aware experimental model, which is functional in JET database. Both models have been also tested in $\sim 50$ AUG shots.
Submitted: Feb 1, 2024