Paper ID: 2402.01557

Deep Continuous Networks

Nergis Tomen, Silvia L. Pintea, Jan C. van Gemert

CNNs and computational models of biological vision share some fundamental principles, which opened new avenues of research. However, fruitful cross-field research is hampered by conventional CNN architectures being based on spatially and depthwise discrete representations, which cannot accommodate certain aspects of biological complexity such as continuously varying receptive field sizes and dynamics of neuronal responses. Here we propose deep continuous networks (DCNs), which combine spatially continuous filters, with the continuous depth framework of neural ODEs. This allows us to learn the spatial support of the filters during training, as well as model the continuous evolution of feature maps, linking DCNs closely to biological models. We show that DCNs are versatile and highly applicable to standard image classification and reconstruction problems, where they improve parameter and data efficiency, and allow for meta-parametrization. We illustrate the biological plausibility of the scale distributions learned by DCNs and explore their performance in a neuroscientifically inspired pattern completion task. Finally, we investigate an efficient implementation of DCNs by changing input contrast.

Submitted: Feb 2, 2024