Paper ID: 2402.01750

PACE: A Pragmatic Agent for Enhancing Communication Efficiency Using Large Language Models

Jiaxuan Li, Minxi Yang, Dahua Gao, Wenlong Xu, Guangming Shi

Current communication technologies face limitations in terms of theoretical capacity, spectrum availability, and power resources. Pragmatic communication, leveraging terminal intelligence for selective data transmission, offers resource conservation. Existing research lacks universal intention resolution tools, limiting applicability to specific tasks. This paper proposes an image pragmatic communication framework based on a Pragmatic Agent for Communication Efficiency (PACE) using Large Language Models (LLM). In this framework, PACE sequentially performs semantic perception, intention resolution, and intention-oriented coding. To ensure the effective utilization of LLM in communication, a knowledge base is designed to supplement the necessary knowledge, dedicated prompts are introduced to facilitate understanding of pragmatic communication scenarios and task requirements, and a chain of thought is designed to assist in making reasonable trade-offs between transmission efficiency and cost. For experimental validation, this paper constructs an image pragmatic communication dataset along with corresponding evaluation standards. Simulation results indicate that the proposed method outperforms traditional and non-LLM-based pragmatic communication in terms of transmission efficiency.

Submitted: Jan 30, 2024