Paper ID: 2402.02012

Precise Knowledge Transfer via Flow Matching

Shitong Shao, Zhiqiang Shen, Linrui Gong, Huanran Chen, Xu Dai

In this paper, we propose a novel knowledge transfer framework that introduces continuous normalizing flows for progressive knowledge transformation and leverages multi-step sampling strategies to achieve precision knowledge transfer. We name this framework Knowledge Transfer with Flow Matching (FM-KT), which can be integrated with a metric-based distillation method with any form (\textit{e.g.} vanilla KD, DKD, PKD and DIST) and a meta-encoder with any available architecture (\textit{e.g.} CNN, MLP and Transformer). By introducing stochastic interpolants, FM-KD is readily amenable to arbitrary noise schedules (\textit{e.g.}, VP-ODE, VE-ODE, Rectified flow) for normalized flow path estimation. We theoretically demonstrate that the training objective of FM-KT is equivalent to minimizing the upper bound of the teacher feature map or logit negative log-likelihood. Besides, FM-KT can be viewed as a unique implicit ensemble method that leads to performance gains. By slightly modifying the FM-KT framework, FM-KT can also be transformed into an online distillation framework OFM-KT with desirable performance gains. Through extensive experiments on CIFAR-100, ImageNet-1k, and MS-COCO datasets, we empirically validate the scalability and state-of-the-art performance of our proposed methods among relevant comparison approaches.

Submitted: Feb 3, 2024