Paper ID: 2402.02184

Sentiment analysis in non-fixed length audios using a Fully Convolutional Neural Network

María Teresa García-Ordás, Héctor Alaiz-Moretón, José Alberto Benítez-Andrades, Isaías García-Rodríguez, Oscar García-Olalla, Carmen Benavides

In this work, a sentiment analysis method that is capable of accepting audio of any length, without being fixed a priori, is proposed. Mel spectrogram and Mel Frequency Cepstral Coefficients are used as audio description methods and a Fully Convolutional Neural Network architecture is proposed as a classifier. The results have been validated using three well known datasets: EMODB, RAVDESS, and TESS. The results obtained were promising, outperforming the state-of-the-art methods. Also, thanks to the fact that the proposed method admits audios of any size, it allows a sentiment analysis to be made in near real time, which is very interesting for a wide range of fields such as call centers, medical consultations, or financial brokers.

Submitted: Feb 3, 2024