Paper ID: 2402.02346

Closed-Loop Unsupervised Representation Disentanglement with $\beta$-VAE Distillation and Diffusion Probabilistic Feedback

Xin Jin, Bohan Li, BAAO Xie, Wenyao Zhang, Jinming Liu, Ziqiang Li, Tao Yang, Wenjun Zeng

Representation disentanglement may help AI fundamentally understand the real world and thus benefit both discrimination and generation tasks. It currently has at least three unresolved core issues: (i) heavy reliance on label annotation and synthetic data -- causing poor generalization on natural scenarios; (ii) heuristic/hand-craft disentangling constraints make it hard to adaptively achieve an optimal training trade-off; (iii) lacking reasonable evaluation metric, especially for the real label-free data. To address these challenges, we propose a \textbf{C}losed-\textbf{L}oop unsupervised representation \textbf{Dis}entanglement approach dubbed \textbf{CL-Dis}. Specifically, we use diffusion-based autoencoder (Diff-AE) as a backbone while resorting to $\beta$-VAE as a co-pilot to extract semantically disentangled representations. The strong generation ability of diffusion model and the good disentanglement ability of VAE model are complementary. To strengthen disentangling, VAE-latent distillation and diffusion-wise feedback are interconnected in a closed-loop system for a further mutual promotion. Then, a self-supervised \textbf{Navigation} strategy is introduced to identify interpretable semantic directions in the disentangled latent space. Finally, a new metric based on content tracking is designed to evaluate the disentanglement effect. Experiments demonstrate the superiority of CL-Dis on applications like real image manipulation and visual analysis.

Submitted: Feb 4, 2024