Paper ID: 2402.02384
Acoustic Local Positioning With Encoded Emission Beacons
Jesus Urena, Alvaro Hernandez, Juan Jesus Garcia, Jose Manuel Villadangos, Maria del Carmen Perez, David Gualda, Fernando J. Alvarez, Teodoro Aguilera
Acoustic local positioning systems (ALPSs) are an interesting alternative for indoor positioning due to certain advantages over other approaches, including their relatively high accuracy, low cost, and room-level signal propagation. Centimeter-level or fine-grained indoor positioning can be an asset for robot navigation, guiding a person to, for instance, a particular piece in a museum or to a specific product in a shop, targeted advertising, or augmented reality. In airborne system applications, acoustic positioning can be based on using opportunistic signals or sounds produced by the person or object to be located (e.g., noise from appliances or the speech from a speaker) or from encoded emission beacons (or anchors) specifically designed for this purpose. This work presents a review of the different challenges that designers of systems based on encoded emission beacons must address in order to achieve suitable performance. At low-level processing, the waveform design (coding and modulation) and the processing of the received signal are key factors to address such drawbacks as multipath propagation, multiple-access interference, nearfar effect, or Doppler shifting. With regards to high-level system design, the issues to be addressed are related to the distribution of beacons, ease of deployment, and calibration and positioning algorithms, including the possible fusion of information. Apart from theoretical discussions, this work also includes the description of an ALPS that was implemented, installed in a large area and tested for mobile robot navigation. In addition to practical interest for real applications, airborne ALPSs can also be used as an excellent platform to test complex algorithms, which can be subsequently adapted for other positioning systems, such as underwater acoustic systems or ultrawideband radiofrequency (UWB RF) systems.
Submitted: Feb 4, 2024