Paper ID: 2402.04108

Hierarchical Delay Attribution Classification using Unstructured Text in Train Management Systems

Anton Borg, Per Lingvall, Martin Svensson

EU directives stipulate a systematic follow-up of train delays. In Sweden, the Swedish Transport Administration registers and assigns an appropriate delay attribution code. However, this delay attribution code is assigned manually, which is a complex task. In this paper, a machine learning-based decision support for assigning delay attribution codes based on event descriptions is investigated. The text is transformed using TF-IDF, and two models, Random Forest and Support Vector Machine, are evaluated against a random uniform classifier and the classification performance of the Swedish Transport Administration. Further, the problem is modeled as both a hierarchical and flat approach. The results indicate that a hierarchical approach performs better than a flat approach. Both approaches perform better than the random uniform classifier but perform worse than the manual classification.

Submitted: Feb 6, 2024