Paper ID: 2402.04453

The Potential of AutoML for Recommender Systems

Tobias Vente, Joeran Beel

Automated Machine Learning (AutoML) has greatly advanced applications of Machine Learning (ML) including model compression, machine translation, and computer vision. Recommender Systems (RecSys) can be seen as an application of ML. Yet, AutoML has found little attention in the RecSys community; nor has RecSys found notable attention in the AutoML community. Only few and relatively simple Automated Recommender Systems (AutoRecSys) libraries exist that adopt AutoML techniques. However, these libraries are based on student projects and do not offer the features and thorough development of AutoML libraries. We set out to determine how AutoML libraries perform in the scenario of an inexperienced user who wants to implement a recommender system. We compared the predictive performance of 60 AutoML, AutoRecSys, ML, and RecSys algorithms from 15 libraries, including a mean predictor baseline, on 14 explicit feedback RecSys datasets. To simulate the perspective of an inexperienced user, the algorithms were evaluated with default hyperparameters. We found that AutoML and AutoRecSys libraries performed best. AutoML libraries performed best for six of the 14 datasets (43%), but it was not always the same AutoML library performing best. The single-best library was the AutoRecSys library Auto-Surprise, which performed best on five datasets (36%). On three datasets (21%), AutoML libraries performed poorly, and RecSys libraries with default parameters performed best. Although, while obtaining 50% of all placements in the top five per dataset, RecSys algorithms fall behind AutoML on average. ML algorithms generally performed the worst.

Submitted: Feb 6, 2024