Paper ID: 2402.06389

Human Aesthetic Preference-Based Large Text-to-Image Model Personalization: Kandinsky Generation as an Example

Aven-Le Zhou, Yu-Ao Wang, Wei Wu, Kang Zhang

With the advancement of neural generative capabilities, the art community has actively embraced GenAI (generative artificial intelligence) for creating painterly content. Large text-to-image models can quickly generate aesthetically pleasing outcomes. However, the process can be non-deterministic and often involves tedious trial-and-error, as users struggle with formulating effective prompts to achieve their desired results. This paper introduces a prompting-free generative approach that empowers users to automatically generate personalized painterly content that incorporates their aesthetic preferences in a customized artistic style. This approach involves utilizing ``semantic injection'' to customize an artist model in a specific artistic style, and further leveraging a genetic algorithm to optimize the prompt generation process through real-time iterative human feedback. By solely relying on the user's aesthetic evaluation and preference for the artist model-generated images, this approach creates the user a personalized model that encompasses their aesthetic preferences and the customized artistic style.

Submitted: Feb 9, 2024