Paper ID: 2402.06452

An Algorithmic Framework for Constructing Multiple Decision Trees by Evaluating Their Combination Performance Throughout the Construction Process

Keito Tajima, Naoki Ichijo, Yuta Nakahara, Toshiyasu Matsushima

Predictions using a combination of decision trees are known to be effective in machine learning. Typical ideas for constructing a combination of decision trees for prediction are bagging and boosting. Bagging independently constructs decision trees without evaluating their combination performance and averages them afterward. Boosting constructs decision trees sequentially, only evaluating a combination performance of a new decision tree and the fixed past decision trees at each step. Therefore, neither method directly constructs nor evaluates a combination of decision trees for the final prediction. When the final prediction is based on a combination of decision trees, it is natural to evaluate the appropriateness of the combination when constructing them. In this study, we propose a new algorithmic framework that constructs decision trees simultaneously and evaluates their combination performance throughout the construction process. Our framework repeats two procedures. In the first procedure, we construct new candidates of combinations of decision trees to find a proper combination of decision trees. In the second procedure, we evaluate each combination performance of decision trees under some criteria and select a better combination. To confirm the performance of the proposed framework, we perform experiments on synthetic and benchmark data.

Submitted: Feb 9, 2024