Paper ID: 2402.06932

Learning Attributed Graphlets: Predictive Graph Mining by Graphlets with Trainable Attribute

Tajima Shinji, Ren Sugihara, Ryota Kitahara, Masayuki Karasuyama

The graph classification problem has been widely studied; however, achieving an interpretable model with high predictive performance remains a challenging issue. This paper proposes an interpretable classification algorithm for attributed graph data, called LAGRA (Learning Attributed GRAphlets). LAGRA learns importance weights for small attributed subgraphs, called attributed graphlets (AGs), while simultaneously optimizing their attribute vectors. This enables us to obtain a combination of subgraph structures and their attribute vectors that strongly contribute to discriminating different classes. A significant characteristics of LAGRA is that all the subgraph structures in the training dataset can be considered as a candidate structures of AGs. This approach can explore all the potentially important subgraphs exhaustively, but obviously, a naive implementation can require a large amount of computations. To mitigate this issue, we propose an efficient pruning strategy by combining the proximal gradient descent and a graph mining tree search. Our pruning strategy can ensure that the quality of the solution is maintained compared to the result without pruning. We empirically demonstrate that LAGRA has superior or comparable prediction performance to the standard existing algorithms including graph neural networks, while using only a small number of AGs in an interpretable manner.

Submitted: Feb 10, 2024