Paper ID: 2402.06986
Cacophony: An Improved Contrastive Audio-Text Model
Ge Zhu, Jordan Darefsky, Zhiyao Duan
Despite recent advancements in audio-text modeling, audio-text contrastive models still lag behind their image-text counterparts in scale and performance. We propose a method to improve both the scale and the training of audio-text contrastive models. Specifically, we craft a large-scale audio-text dataset containing 13,000 hours of text-labeled audio, using pretrained language models to process noisy text descriptions and automatic captioning to obtain text descriptions for unlabeled audio samples. We first train on audio-only data with a masked autoencoder (MAE) objective, which allows us to benefit from the scalability of unlabeled audio datasets. We then, initializing our audio encoder from the MAE model, train a contrastive model with an auxiliary captioning objective. Our final model, which we name Cacophony, achieves state-of-the-art performance on audio-text retrieval tasks, and exhibits competitive results on the HEAR benchmark and other downstream tasks such as zero-shot classification.
Submitted: Feb 10, 2024