Paper ID: 2402.06990

Guided Sketch-Based Program Induction by Search Gradients

Ahmad Ayaz Amin

Many tasks can be easily solved using machine learning techniques. However, some tasks cannot readily be solved using statistical models, requiring a symbolic approach instead. Program induction is one of the ways that such tasks can be solved by means of capturing an interpretable and generalizable algorithm through training. However, contemporary approaches to program induction are not sophisticated enough to readily be applied to various types of tasks as they tend to be formulated as a single, all-encompassing model, usually parameterized by neural networks. In an attempt to make program induction a viable solution for many scenarios, we propose a framework for learning parameterized programs via search gradients using evolution strategies. This formulation departs from traditional program induction as it allows for the programmer to impart task-specific code to the program 'sketch', while also enjoying the benefits of accelerated learning through end-to-end gradient-based optimization.

Submitted: Feb 10, 2024