Paper ID: 2402.07059
Domain Adaptable Fine-Tune Distillation Framework For Advancing Farm Surveillance
Raza Imam, Muhammad Huzaifa, Nabil Mansour, Shaher Bano Mirza, Fouad Lamghari
In this study, we propose an automated framework for camel farm monitoring, introducing two key contributions: the Unified Auto-Annotation framework and the Fine-Tune Distillation framework. The Unified Auto-Annotation approach combines two models, GroundingDINO (GD), and Segment-Anything-Model (SAM), to automatically annotate raw datasets extracted from surveillance videos. Building upon this foundation, the Fine-Tune Distillation framework conducts fine-tuning of student models using the auto-annotated dataset. This process involves transferring knowledge from a large teacher model to a student model, resembling a variant of Knowledge Distillation. The Fine-Tune Distillation framework aims to be adaptable to specific use cases, enabling the transfer of knowledge from the large models to the small models, making it suitable for domain-specific applications. By leveraging our raw dataset collected from Al-Marmoom Camel Farm in Dubai, UAE, and a pre-trained teacher model, GroundingDINO, the Fine-Tune Distillation framework produces a lightweight deployable model, YOLOv8. This framework demonstrates high performance and computational efficiency, facilitating efficient real-time object detection. Our code is available at \href{https://github.com/Razaimam45/Fine-Tune-Distillation}{https://github.com/Razaimam45/Fine-Tune-Distillation}
Submitted: Feb 10, 2024