Paper ID: 2402.08085

Message Detouring: A Simple Yet Effective Cycle Representation for Expressive Graph Learning

Ziquan Wei, Tingting Dan, Guorong Wu

Graph learning is crucial in the fields of bioinformatics, social networks, and chemicals. Although high-order graphlets, such as cycles, are critical to achieving an informative graph representation for node classification, edge prediction, and graph recognition, modeling high-order topological characteristics poses significant computational challenges, restricting its widespread applications in machine learning. To address this limitation, we introduce the concept of \textit{message detouring} to hierarchically characterize cycle representation throughout the entire graph, which capitalizes on the contrast between the shortest and longest pathways within a range of local topologies associated with each graph node. The topological feature representations derived from our message detouring landscape demonstrate comparable expressive power to high-order \textit{Weisfeiler-Lehman} (WL) tests but much less computational demands. In addition to the integration with graph kernel and message passing neural networks, we present a novel message detouring neural network, which uses Transformer backbone to integrate cycle representations across nodes and edges. Aside from theoretical results, experimental results on expressiveness, graph classification, and node classification show message detouring can significantly outperform current counterpart approaches on various benchmark datasets.

Submitted: Feb 12, 2024