Paper ID: 2402.08491
Deep Reinforcement Learning for Controlled Traversing of the Attractor Landscape of Boolean Models in the Context of Cellular Reprogramming
Andrzej Mizera, Jakub Zarzycki
Cellular reprogramming can be used for both the prevention and cure of different diseases. However, the efficiency of discovering reprogramming strategies with classical wet-lab experiments is hindered by lengthy time commitments and high costs. In this study, we develop a novel computational framework based on deep reinforcement learning that facilitates the identification of reprogramming strategies. For this aim, we formulate a control problem in the context of cellular reprogramming for the frameworks of BNs and PBNs under the asynchronous update mode. Furthermore, we introduce the notion of a pseudo-attractor and a procedure for identification of pseudo-attractor state during training. Finally, we devise a computational framework for solving the control problem, which we test on a number of different models.
Submitted: Feb 13, 2024