Paper ID: 2402.09113

How does Your RL Agent Explore? An Optimal Transport Analysis of Occupancy Measure Trajectories

Reabetswe M. Nkhumise, Debabrota Basu, Tony J. Prescott, Aditya Gilra

The rising successes of RL are propelled by combining smart algorithmic strategies and deep architectures to optimize the distribution of returns and visitations over the state-action space. A quantitative framework to compare the learning processes of these eclectic RL algorithms is currently absent but desired in practice. We address this gap by representing the learning process of an RL algorithm as a sequence of policies generated during training, and then studying the policy trajectory induced in the manifold of state-action occupancy measures. Using an optimal transport-based metric, we measure the length of the paths induced by the policy sequence yielded by an RL algorithm between an initial policy and a final optimal policy. Hence, we first define the 'Effort of Sequential Learning' (ESL). ESL quantifies the relative distance that an RL algorithm travels compared to the shortest path from the initial to the optimal policy. Further, we connect the dynamics of policies in the occupancy measure space and regret (another metric to understand the suboptimality of an RL algorithm), by defining the 'Optimal Movement Ratio' (OMR). OMR assesses the fraction of movements in the occupancy measure space that effectively reduce an analogue of regret. Finally, we derive approximation guarantees to estimate ESL and OMR with finite number of samples and without access to an optimal policy. Through empirical analyses across various environments and algorithms, we demonstrate that ESL and OMR provide insights into the exploration processes of RL algorithms and hardness of different tasks in discrete and continuous MDPs.

Submitted: Feb 14, 2024