Paper ID: 2402.09448
A Comparative Study of Conventional and Tripolar EEG for High-Performance Reach-to-Grasp BCI Systems
Ali Rabiee, Sima Ghafoori, Anna Cetera, Walter Besio, Reza Abiri
This study aims to enhance BCI applications for individuals with motor impairments by comparing the effectiveness of tripolar EEG (tEEG) with conventional EEG. The focus is on interpreting and decoding various grasping movements, such as power grasp and precision grasp. The goal is to determine which EEG technology is more effective in processing and translating grasp related neural signals. The approach involved experimenting on ten healthy participants who performed two distinct grasp movements: power grasp and precision grasp, with a no movement condition serving as the baseline. Our research presents a thorough comparison between EEG and tEEG in decoding grasping movements. This comparison spans several key parameters, including signal to noise ratio (SNR), spatial resolution via functional connectivity, ERPs, and wavelet time frequency analysis. Additionally, our study involved extracting and analyzing statistical features from the wavelet coefficients, and both binary and multiclass classification methods were employed. Four machine learning algorithms were used to evaluate the decoding accuracies. Our results indicated that tEEG demonstrated superior performance over conventional EEG in various aspects. This included a higher signal to noise ratio, enhanced spatial resolution, and more informative data in ERPs and wavelet time frequency analysis. The use of tEEG led to notable improvements in decoding accuracy for differentiating movement types. Specifically, tEEG achieved around 90% accuracy in binary and 75.97% for multiclass classification. These results are markedly better than those from standard EEG, which recorded a maximum of 77.85% and 61.27% in similar tasks, respectively. These findings highlight the superior effectiveness of tEEG over EEG in decoding grasp types and its competitive or superior performance in complex classifications compared with existing research.
Submitted: Jan 31, 2024