Paper ID: 2402.10045
Short-Form Videos and Mental Health: A Knowledge-Guided Neural Topic Model
Jiaheng Xie, Ruicheng Liang, Yidong Chai, Yang Liu, Daniel Zeng
Along with the rise of short-form videos, their mental impacts on viewers have led to widespread consequences, prompting platforms to predict videos' impact on viewers' mental health. Subsequently, they can take intervention measures according to their community guidelines. Nevertheless, applicable predictive methods lack relevance to well-established medical knowledge, which outlines clinically proven external and environmental factors of mental disorders. To account for such medical knowledge, we resort to an emergent methodological discipline, seeded Neural Topic Models (NTMs). However, existing seeded NTMs suffer from the limitations of single-origin topics, unknown topic sources, unclear seed supervision, and suboptimal convergence. To address those challenges, we develop a novel Knowledge-Guided NTM to predict a short-form video's suicidal thought impact on viewers. Extensive empirical analyses using TikTok and Douyin datasets prove that our method outperforms state-of-the-art benchmarks. Our method also discovers medically relevant topics from videos that are linked to suicidal thought impact. We contribute to IS with a novel video analytics method that is generalizable to other video classification problems. Practically, our method can help platforms understand videos' suicidal thought impacts, thus moderating videos that violate their community guidelines.
Submitted: Jan 11, 2024