Paper ID: 2402.10222

Autonomous Vehicle Patrolling Through Deep Reinforcement Learning: Learning to Communicate and Cooperate

Chenhao Tong, Maria A. Rodriguez, Richard O. Sinnott

Autonomous vehicles are suited for continuous area patrolling problems. Finding an optimal patrolling strategy can be challenging due to unknown environmental factors, such as wind or landscape; or autonomous vehicles' constraints, such as limited battery life or hardware failures. Importantly, patrolling large areas often requires multiple agents to collectively coordinate their actions. However, an optimal coordination strategy is often non-trivial to be manually defined due to the complex nature of patrolling environments. In this paper, we consider a patrolling problem with environmental factors, agent limitations, and three typical cooperation problems -- collision avoidance, congestion avoidance, and patrolling target negotiation. We propose a multi-agent reinforcement learning solution based on a reinforced inter-agent learning (RIAL) method. With this approach, agents are trained to develop their own communication protocol to cooperate during patrolling where faults can and do occur. The solution is validated through simulation experiments and is compared with several state-of-the-art patrolling solutions from different perspectives, including the overall patrol performance, the collision avoidance performance, the efficiency of battery recharging strategies, and the overall fault tolerance.

Submitted: Jan 28, 2024