Paper ID: 2402.10981
Stuck-at Faults in ReRAM Neuromorphic Circuit Array and their Correction through Machine Learning
Vedant Sawal, Hiu Yung Wong
In this paper, we study the inference accuracy of the Resistive Random Access Memory (ReRAM) neuromorphic circuit due to stuck-at faults (stuck-on, stuck-off, and stuck at a certain resistive value). A simulation framework using Python is used to perform supervised machine learning (neural network with 3 hidden layers, 1 input layer, and 1 output layer) of handwritten digits and construct a corresponding fully analog neuromorphic circuit (4 synaptic arrays) simulated by Spectre. A generic 45nm Process Development Kit (PDK) was used. We study the difference in the inference accuracy degradation due to stuck-on and stuck-off defects. Various defect patterns are studied including circular, ring, row, column, and circular-complement defects. It is found that stuck-on and stuck-off defects have a similar effect on inference accuracy. However, it is also found that if there is a spatial defect variation across the columns, the inference accuracy may be degraded significantly. We also propose a machine learning (ML) strategy to recover the inference accuracy degradation due to stuck-at faults. The inference accuracy is improved from 48% to 85% in a defective neuromorphic circuit.
Submitted: Feb 15, 2024