Paper ID: 2402.11481
DictLLM: Harnessing Key-Value Data Structures with Large Language Models for Enhanced Medical Diagnostics
YiQiu Guo, Yuchen Yang, Ya Zhang, Yu Wang, Yanfeng Wang
Structured data offers a sophisticated mechanism for the organization of information. Existing methodologies for the text-serialization of structured data in the context of large language models fail to adequately address the heterogeneity inherent in key-value structured data. These methods are not ideal and frequently result in larger input sizes and poor adaptability to input changes. In this paper, we introduce DictLLM, an innovative framework designed to improve the modeling of key-value structured data, like medical laboratory reports, for generating medical diagnoses. DictLLM integrates three key components: (1) group positional encoding to maintain permutation invariance, (2) hierarchical attention bias to capture the inherent bias in structured data, and (3) an optimal transport alignment layer that aligns the embedding generated by the dictionary encoder with the LLM, thereby producing a sequence of fixed-length virtual tokens. We carry out experiments using various LLM models on a comprehensive real-world medical laboratory report dataset for automatic diagnosis generation, our findings illustrate that DictLLM significantly outperforms established baseline methods and few-shot GPT-4 implementations in terms of both Rouge-L and Knowledge F1 scores. Furthermore, our evaluation of the framework's scalability and robustness, through a series of experiments, underscores its exceptional capability in accurately modeling the complex key-value data structure of medical dictionary data.
Submitted: Feb 18, 2024