Paper ID: 2402.12779

Two-stage Rainfall-Forecasting Diffusion Model

XuDong Ling, ChaoRong Li, FengQing Qin, LiHong Zhu, Yuanyuan Huang

Deep neural networks have made great achievements in rainfall prediction.However, the current forecasting methods have certain limitations, such as with blurry generated images and incorrect spatial positions. To overcome these challenges, we propose a Two-stage Rainfall-Forecasting Diffusion Model (TRDM) aimed at improving the accuracy of long-term rainfall forecasts and addressing the imbalance in performance between temporal and spatial modeling. TRDM is a two-stage method for rainfall prediction tasks. The task of the first stage is to capture robust temporal information while preserving spatial information under low-resolution conditions. The task of the second stage is to reconstruct the low-resolution images generated in the first stage into high-resolution images. We demonstrate state-of-the-art results on the MRMS and Swedish radar datasets. Our project is open source and available on GitHub at: \href{https://github.com/clearlyzerolxd/TRDM}{https://github.com/clearlyzerolxd/TRDM}.

Submitted: Feb 20, 2024