Paper ID: 2402.13007
Improve Cross-Architecture Generalization on Dataset Distillation
Binglin Zhou, Linhao Zhong, Wentao Chen
Dataset distillation, a pragmatic approach in machine learning, aims to create a smaller synthetic dataset from a larger existing dataset. However, existing distillation methods primarily adopt a model-based paradigm, where the synthetic dataset inherits model-specific biases, limiting its generalizability to alternative models. In response to this constraint, we propose a novel methodology termed "model pool". This approach involves selecting models from a diverse model pool based on a specific probability distribution during the data distillation process. Additionally, we integrate our model pool with the established knowledge distillation approach and apply knowledge distillation to the test process of the distilled dataset. Our experimental results validate the effectiveness of the model pool approach across a range of existing models while testing, demonstrating superior performance compared to existing methodologies.
Submitted: Feb 20, 2024