Paper ID: 2402.13273

Operational Collective Intelligence of Humans and Machines

Nikolos Gurney, Fred Morstatter, David V. Pynadath, Adam Russell, Gleb Satyukov

We explore the use of aggregative crowdsourced forecasting (ACF) as a mechanism to help operationalize ``collective intelligence'' of human-machine teams for coordinated actions. We adopt the definition for Collective Intelligence as: ``A property of groups that emerges from synergies among data-information-knowledge, software-hardware, and individuals (those with new insights as well as recognized authorities) that enables just-in-time knowledge for better decisions than these three elements acting alone.'' Collective Intelligence emerges from new ways of connecting humans and AI to enable decision-advantage, in part by creating and leveraging additional sources of information that might otherwise not be included. Aggregative crowdsourced forecasting (ACF) is a recent key advancement towards Collective Intelligence wherein predictions (X\% probability that Y will happen) and rationales (why I believe it is this probability that X will happen) are elicited independently from a diverse crowd, aggregated, and then used to inform higher-level decision-making. This research asks whether ACF, as a key way to enable Operational Collective Intelligence, could be brought to bear on operational scenarios (i.e., sequences of events with defined agents, components, and interactions) and decision-making, and considers whether such a capability could provide novel operational capabilities to enable new forms of decision-advantage.

Submitted: Feb 16, 2024