Paper ID: 2402.14373
Small Language Model Is a Good Guide for Large Language Model in Chinese Entity Relation Extraction
Xuemei Tang, Jun Wang, Qi Su
Recently, large language models (LLMs) have been successful in relational extraction (RE) tasks, especially in the few-shot learning. An important problem in the field of RE is long-tailed data, while not much attention is currently paid to this problem using LLM approaches. Therefore, in this paper, we propose SLCoLM, a model collaboration framework, to mitigate the data long-tail problem. In our framework, We use the ``\textit{Training-Guide-Predict}'' strategy to combine the strengths of pre-trained language models (PLMs) and LLMs, where a task-specific PLM framework acts as a tutor, transfers task knowledge to the LLM, and guides the LLM in performing RE tasks. Our experiments on a RE dataset rich in relation types show that the approach in this paper facilitates RE of long-tail relation types.
Submitted: Feb 22, 2024