Paper ID: 2402.14855
An LLM Maturity Model for Reliable and Transparent Text-to-Query
Lei Yu, Abir Ray
Recognizing the imperative to address the reliability and transparency issues of Large Language Models (LLM), this work proposes an LLM maturity model tailored for text-to-query applications. This maturity model seeks to fill the existing void in evaluating LLMs in such applications by incorporating dimensions beyond mere correctness or accuracy. Moreover, this work introduces a real-world use case from the law enforcement domain and showcases QueryIQ, an LLM-powered, domain-specific text-to-query assistant to expedite user workflows and reveal hidden relationship in data.
Submitted: Feb 20, 2024