Paper ID: 2402.15359
Streaming Gaussian Dirichlet Random Fields for Spatial Predictions of High Dimensional Categorical Observations
J. E. San Soucie, H. M. Sosik, Y. Girdhar
We present the Streaming Gaussian Dirichlet Random Field (S-GDRF) model, a novel approach for modeling a stream of spatiotemporally distributed, sparse, high-dimensional categorical observations. The proposed approach efficiently learns global and local patterns in spatiotemporal data, allowing for fast inference and querying with a bounded time complexity. Using a high-resolution data series of plankton images classified with a neural network, we demonstrate the ability of the approach to make more accurate predictions compared to a Variational Gaussian Process (VGP), and to learn a predictive distribution of observations from streaming categorical data. S-GDRFs open the door to enabling efficient informative path planning over high-dimensional categorical observations, which until now has not been feasible.
Submitted: Feb 23, 2024