Paper ID: 2402.15958
On the dynamics of three-layer neural networks: initial condensation
Zheng-An Chen, Tao Luo
Empirical and theoretical works show that the input weights of two-layer neural networks, when initialized with small values, converge towards isolated orientations. This phenomenon, referred to as condensation, indicates that the gradient descent methods tend to spontaneously reduce the complexity of neural networks during the training process. In this work, we elucidate the mechanisms behind the condensation phenomena occurring in the training of three-layer neural networks and distinguish it from the training of two-layer neural networks. Through rigorous theoretical analysis, we establish the blow-up property of effective dynamics and present a sufficient condition for the occurrence of condensation, findings that are substantiated by experimental results. Additionally, we explore the association between condensation and the low-rank bias observed in deep matrix factorization.
Submitted: Feb 25, 2024