Paper ID: 2402.18084

Spannotation: Enhancing Semantic Segmentation for Autonomous Navigation with Efficient Image Annotation

Samuel O. Folorunsho, William R. Norris

Spannotation is an open source user-friendly tool developed for image annotation for semantic segmentation specifically in autonomous navigation tasks. This study provides an evaluation of Spannotation, demonstrating its effectiveness in generating accurate segmentation masks for various environments like agricultural crop rows, off-road terrains and urban roads. Unlike other popular annotation tools that requires about 40 seconds to annotate an image for semantic segmentation in a typical navigation task, Spannotation achieves similar result in about 6.03 seconds. The tools utility was validated through the utilization of its generated masks to train a U-Net model which achieved a validation accuracy of 98.27% and mean Intersection Over Union (mIOU) of 96.66%. The accessibility, simple annotation process and no-cost features have all contributed to the adoption of Spannotation evident from its download count of 2098 (as of February 25, 2024) since its launch. Future enhancements of Spannotation aim to broaden its application to complex navigation scenarios and incorporate additional automation functionalities. Given its increasing popularity and promising potential, Spannotation stands as a valuable resource in autonomous navigation and semantic segmentation. For detailed information and access to Spannotation, readers are encouraged to visit the project's GitHub repository at https://github.com/sof-danny/spannotation

Submitted: Feb 28, 2024