Paper ID: 2402.19258
MaskFi: Unsupervised Learning of WiFi and Vision Representations for Multimodal Human Activity Recognition
Jianfei Yang, Shijie Tang, Yuecong Xu, Yunjiao Zhou, Lihua Xie
Human activity recognition (HAR) has been playing an increasingly important role in various domains such as healthcare, security monitoring, and metaverse gaming. Though numerous HAR methods based on computer vision have been developed to show prominent performance, they still suffer from poor robustness in adverse visual conditions in particular low illumination, which motivates WiFi-based HAR to serve as a good complementary modality. Existing solutions using WiFi and vision modalities rely on massive labeled data that are very cumbersome to collect. In this paper, we propose a novel unsupervised multimodal HAR solution, MaskFi, that leverages only unlabeled video and WiFi activity data for model training. We propose a new algorithm, masked WiFi-vision modeling (MI2M), that enables the model to learn cross-modal and single-modal features by predicting the masked sections in representation learning. Benefiting from our unsupervised learning procedure, the network requires only a small amount of annotated data for finetuning and can adapt to the new environment with better performance. We conduct extensive experiments on two WiFi-vision datasets collected in-house, and our method achieves human activity recognition and human identification in terms of both robustness and accuracy.
Submitted: Feb 29, 2024