Paper ID: 2402.19366

Exploring the Potential of Large Language Models for Improving Digital Forensic Investigation Efficiency

Akila Wickramasekara, Frank Breitinger, Mark Scanlon

The growing number of cases that require digital forensic analysis raises concerns about the ability of law enforcement to conduct investigations promptly. Consequently, this paper delves into the potential and effectiveness of integrating Large Language Models (LLMs) into digital forensic investigation to address these challenges. A comprehensive literature review is carried out, encompassing existing digital forensic models, tools, LLMs, deep learning techniques, and the use of LLMs in investigations. The review identifies current challenges within existing digital forensic processes and explores both the obstacles and possibilities of incorporating LLMs. In conclusion, the study asserts that the adoption of LLMs in digital forensics, with appropriate constraints, has the potential to improve investigation efficiency, improve traceability, and alleviate technical and judicial barriers faced by law enforcement entities.

Submitted: Feb 29, 2024