Paper ID: 2403.01457
Logic Rules as Explanations for Legal Case Retrieval
Zhongxiang Sun, Kepu Zhang, Weijie Yu, Haoyu Wang, Jun Xu
In this paper, we address the issue of using logic rules to explain the results from legal case retrieval. The task is critical to legal case retrieval because the users (e.g., lawyers or judges) are highly specialized and require the system to provide logical, faithful, and interpretable explanations before making legal decisions. Recently, research efforts have been made to learn explainable legal case retrieval models. However, these methods usually select rationales (key sentences) from the legal cases as explanations, failing to provide faithful and logically correct explanations. In this paper, we propose Neural-Symbolic enhanced Legal Case Retrieval (NS-LCR), a framework that explicitly conducts reasoning on the matching of legal cases through learning case-level and law-level logic rules. The learned rules are then integrated into the retrieval process in a neuro-symbolic manner. Benefiting from the logic and interpretable nature of the logic rules, NS-LCR is equipped with built-in faithful explainability. We also show that NS-LCR is a model-agnostic framework that can be plugged in for multiple legal retrieval models. To showcase NS-LCR's superiority, we enhance existing benchmarks by adding manually annotated logic rules and introducing a novel explainability metric using Large Language Models (LLMs). Our comprehensive experiments reveal NS-LCR's effectiveness for ranking, alongside its proficiency in delivering reliable explanations for legal case retrieval.
Submitted: Mar 3, 2024