Paper ID: 2403.01605
Towards Provable Log Density Policy Gradient
Pulkit Katdare, Anant Joshi, Katherine Driggs-Campbell
Policy gradient methods are a vital ingredient behind the success of modern reinforcement learning. Modern policy gradient methods, although successful, introduce a residual error in gradient estimation. In this work, we argue that this residual term is significant and correcting for it could potentially improve sample-complexity of reinforcement learning methods. To that end, we propose log density gradient to estimate the policy gradient, which corrects for this residual error term. Log density gradient method computes policy gradient by utilising the state-action discounted distributional formulation. We first present the equations needed to exactly find the log density gradient for a tabular Markov Decision Processes (MDPs). For more complex environments, we propose a temporal difference (TD) method that approximates log density gradient by utilizing backward on-policy samples. Since backward sampling from a Markov chain is highly restrictive we also propose a min-max optimization that can approximate log density gradient using just on-policy samples. We also prove uniqueness, and convergence under linear function approximation, for this min-max optimization. Finally, we show that the sample complexity of our min-max optimization to be of the order of $m^{-1/2}$, where $m$ is the number of on-policy samples. We also demonstrate a proof-of-concept for our log density gradient method on gridworld environment, and observe that our method is able to improve upon the classical policy gradient method by a clear margin, thus indicating a promising novel direction to develop reinforcement learning algorithms that require fewer samples.
Submitted: Mar 3, 2024