Paper ID: 2403.01671

Permutation invariant functions: statistical tests, density estimation, and computationally efficient embedding

Wee Chaimanowong, Ying Zhu

Permutation invariance is among the most common symmetry that can be exploited to simplify complex problems in machine learning (ML). There has been a tremendous surge of research activities in building permutation invariant ML architectures. However, less attention is given to: (1) how to statistically test for permutation invariance of coordinates in a random vector where the dimension is allowed to grow with the sample size; (2) how to leverage permutation invariance in estimation problems and how does it help reduce dimensions. In this paper, we take a step back and examine these questions in several fundamental problems: (i) testing the assumption of permutation invariance of multivariate distributions; (ii) estimating permutation invariant densities; (iii) analyzing the metric entropy of permutation invariant function classes and compare them with their counterparts without imposing permutation invariance; (iv) deriving an embedding of permutation invariant reproducing kernel Hilbert spaces for efficient computation. In particular, our methods for (i) and (iv) are based on a sorting trick and (ii) is based on an averaging trick. These tricks substantially simplify the exploitation of permutation invariance.

Submitted: Mar 4, 2024