Paper ID: 2403.03849
MedMamba: Vision Mamba for Medical Image Classification
Yubiao Yue, Zhenzhang Li
Since the era of deep learning, convolutional neural networks (CNNs) and vision transformers (ViTs) have been extensively studied and widely used in medical image classification tasks. Unfortunately, CNN's limitations in modeling long-range dependencies result in poor classification performances. In contrast, ViTs are hampered by the quadratic computational complexity of their self-attention mechanism, making them difficult to deploy in real-world settings with limited computational resources. Recent studies have shown that state space models (SSMs) represented by Mamba can effectively model long-range dependencies while maintaining linear computational complexity. Inspired by it, we proposed MedMamba, the first vision Mamba for generalized medical image classification. Concretely, we introduced a novel hybrid basic block named SS-Conv-SSM, which integrates the convolutional layers for extracting local features with the abilities of SSM to capture long-range dependencies, aiming to model medical images from different image modalities efficiently. By employing the grouped convolution strategy and channel-shuffle operation, MedMamba successfully provides fewer model parameters and a lower computational burden for efficient applications. To demonstrate the potential of MedMamba, we conducted extensive experiments using 16 datasets containing ten imaging modalities and 411,007 images. Experimental results show that the proposed MedMamba demonstrates competitive performance in classifying various medical images compared with the state-of-the-art methods. Our work is aims to establish a new baseline for medical image classification and provide valuable insights for developing more powerful SSM-based artificial intelligence algorithms and application systems in the medical field. The source codes and all pre-trained weights of MedMamba are available at https://github.com/YubiaoYue/MedMamba.
Submitted: Mar 6, 2024