Paper ID: 2403.04697

AUFormer: Vision Transformers are Parameter-Efficient Facial Action Unit Detectors

Kaishen Yuan, Zitong Yu, Xin Liu, Weicheng Xie, Huanjing Yue, Jingyu Yang

Facial Action Units (AU) is a vital concept in the realm of affective computing, and AU detection has always been a hot research topic. Existing methods suffer from overfitting issues due to the utilization of a large number of learnable parameters on scarce AU-annotated datasets or heavy reliance on substantial additional relevant data. Parameter-Efficient Transfer Learning (PETL) provides a promising paradigm to address these challenges, whereas its existing methods lack design for AU characteristics. Therefore, we innovatively investigate PETL paradigm to AU detection, introducing AUFormer and proposing a novel Mixture-of-Knowledge Expert (MoKE) collaboration mechanism. An individual MoKE specific to a certain AU with minimal learnable parameters first integrates personalized multi-scale and correlation knowledge. Then the MoKE collaborates with other MoKEs in the expert group to obtain aggregated information and inject it into the frozen Vision Transformer (ViT) to achieve parameter-efficient AU detection. Additionally, we design a Margin-truncated Difficulty-aware Weighted Asymmetric Loss (MDWA-Loss), which can encourage the model to focus more on activated AUs, differentiate the difficulty of unactivated AUs, and discard potential mislabeled samples. Extensive experiments from various perspectives, including within-domain, cross-domain, data efficiency, and micro-expression domain, demonstrate AUFormer's state-of-the-art performance and robust generalization abilities without relying on additional relevant data. The code for AUFormer is available at https://github.com/yuankaishen2001/AUFormer.

Submitted: Mar 7, 2024