Paper ID: 2403.05272
Engineering consensus in static networks with unknown disruptors
Agathe Bouis, Christopher Lowe, Ruaridh A. Clark, Malcolm Macdonald
Distributed control increases system scalability, flexibility, and redundancy. Foundational to such decentralisation is consensus formation, by which decision-making and coordination are achieved. However, decentralised multi-agent systems are inherently vulnerable to disruption. To develop a resilient consensus approach, inspiration is taken from the study of social systems and their dynamics; specifically, the Deffuant Model. A dynamic algorithm is presented enabling efficient consensus to be reached with an unknown number of disruptors present within a multi-agent system. By inverting typical social tolerance, agents filter out extremist non-standard opinions that would drive them away from consensus. This approach allows distributed systems to deal with unknown disruptions, without knowledge of the network topology or the numbers and behaviours of the disruptors. A disruptor-agnostic algorithm is particularly suitable to real-world applications where this information is typically unknown. Faster and tighter convergence can be achieved across a range of scenarios with the social dynamics inspired algorithm, compared with standard Mean-Subsequence-Reduced-type methods.
Submitted: Mar 8, 2024