Paper ID: 2403.05416
SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised Learning for Robust Infrared Small Target Detection
Yahao Lu, Yupei Lin, Han Wu, Xiaoyu Xian, Yukai Shi, Liang Lin
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds. Recently, convolutional neural networks have achieved significant advantages in general object detection. With the development of Transformer, the scale of SIRST models is constantly increasing. Due to the limited training samples, performance has not been improved accordingly. The quality, quantity, and diversity of the infrared dataset are critical to the detection of small targets. To highlight this issue, we propose a negative sample augmentation method in this paper. Specifically, a negative augmentation approach is proposed to generate massive negatives for self-supervised learning. Firstly, we perform a sequential noise modeling technology to generate realistic infrared data. Secondly, we fuse the extracted noise with the original data to facilitate diversity and fidelity in the generated data. Lastly, we proposed a negative augmentation strategy to enrich diversity as well as maintain semantic invariance. The proposed algorithm produces a synthetic SIRST-5K dataset, which contains massive pseudo-data and corresponding labels. With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed. Compared with other state-of-the-art (SOTA) methods, our method achieves outstanding performance in terms of probability of detection (Pd), false-alarm rate (Fa), and intersection over union (IoU).
Submitted: Mar 8, 2024