Paper ID: 2403.05557

Re-thinking Human Activity Recognition with Hierarchy-aware Label Relationship Modeling

Jingwei Zuo, Hakim Hacid

Human Activity Recognition (HAR) has been studied for decades, from data collection, learning models, to post-processing and result interpretations. However, the inherent hierarchy in the activities remains relatively under-explored, despite its significant impact on model performance and interpretation. In this paper, we propose H-HAR, by rethinking the HAR tasks from a fresh perspective by delving into their intricate global label relationships. Rather than building multiple classifiers separately for multi-layered activities, we explore the efficacy of a flat model enhanced with graph-based label relationship modeling. Being hierarchy-aware, the graph-based label modeling enhances the fundamental HAR model, by incorporating intricate label relationships into the model. We validate the proposal with a multi-label classifier on complex human activity data. The results highlight the advantages of the proposal, which can be vertically integrated into advanced HAR models to further enhance their performances.

Submitted: Feb 11, 2024