Paper ID: 2403.05576

Understanding Subjectivity through the Lens of Motivational Context in Model-Generated Image Satisfaction

Senjuti Dutta, Sherol Chen, Sunny Mak, Amnah Ahmad, Katherine Collins, Alena Butryna, Deepak Ramachandran, Krishnamurthy Dvijotham, Ellie Pavlick, Ravi Rajakumar

Image generation models are poised to become ubiquitous in a range of applications. These models are often fine-tuned and evaluated using human quality judgments that assume a universal standard, failing to consider the subjectivity of such tasks. To investigate how to quantify subjectivity, and the scale of its impact, we measure how assessments differ among human annotators across different use cases. Simulating the effects of ordinarily latent elements of annotators subjectivity, we contrive a set of motivations (t-shirt graphics, presentation visuals, and phone background images) to contextualize a set of crowdsourcing tasks. Our results show that human evaluations of images vary within individual contexts and across combinations of contexts. Three key factors affecting this subjectivity are image appearance, image alignment with text, and representation of objects mentioned in the text. Our study highlights the importance of taking individual users and contexts into account, both when building and evaluating generative models

Submitted: Feb 27, 2024