Paper ID: 2403.05636

Tuning-Free Accountable Intervention for LLM Deployment -- A Metacognitive Approach

Zhen Tan, Jie Peng, Tianlong Chen, Huan Liu

Large Language Models (LLMs) have catalyzed transformative advances across a spectrum of natural language processing tasks through few-shot or zero-shot prompting, bypassing the need for parameter tuning. While convenient, this modus operandi aggravates ``hallucination'' concerns, particularly given the enigmatic ``black-box'' nature behind their gigantic model sizes. Such concerns are exacerbated in high-stakes applications (e.g., healthcare), where unaccountable decision errors can lead to devastating consequences. In contrast, human decision-making relies on nuanced cognitive processes, such as the ability to sense and adaptively correct misjudgments through conceptual understanding. Drawing inspiration from human cognition, we propose an innovative \textit{metacognitive} approach, dubbed \textbf{CLEAR}, to equip LLMs with capabilities for self-aware error identification and correction. Our framework facilitates the construction of concept-specific sparse subnetworks that illuminate transparent decision pathways. This provides a novel interface for model \textit{intervention} after deployment. Our intervention offers compelling advantages: (\textit{i})~at deployment or inference time, our metacognitive LLMs can self-consciously identify potential mispredictions with minimum human involvement, (\textit{ii})~the model has the capability to self-correct its errors efficiently, obviating the need for additional tuning, and (\textit{iii})~the rectification procedure is not only self-explanatory but also user-friendly, enhancing the interpretability and accessibility of the model. By integrating these metacognitive features, our approach pioneers a new path toward engendering greater trustworthiness and accountability in the deployment of LLMs.

Submitted: Mar 8, 2024