Paper ID: 2403.05918

SEMRes-DDPM: Residual Network Based Diffusion Modelling Applied to Imbalanced Data

Ming Zheng, Yang Yang, Zhi-Hang Zhao, Shan-Chao Gan, Yang Chen, Si-Kai Ni, Yang Lu

In the field of data mining and machine learning, commonly used classification models cannot effectively learn in unbalanced data. In order to balance the data distribution before model training, oversampling methods are often used to generate data for a small number of classes to solve the problem of classifying unbalanced data. Most of the classical oversampling methods are based on the SMOTE technique, which only focuses on the local information of the data, and therefore the generated data may have the problem of not being realistic enough. In the current oversampling methods based on generative networks, the methods based on GANs can capture the true distribution of data, but there is the problem of pattern collapse and training instability in training; in the oversampling methods based on denoising diffusion probability models, the neural network of the inverse diffusion process using the U-Net is not applicable to tabular data, and although the MLP can be used to replace the U-Net, the problem exists due to the simplicity of the structure and the poor effect of removing noise. problem of poor noise removal. In order to overcome the above problems, we propose a novel oversampling method SEMRes-DDPM.In the SEMRes-DDPM backward diffusion process, a new neural network structure SEMST-ResNet is used, which is suitable for tabular data and has good noise removal effect, and it can generate tabular data with higher quality. Experiments show that the SEMResNet network removes noise better than MLP; SEMRes-DDPM generates data distributions that are closer to the real data distributions than TabDDPM with CWGAN-GP; on 20 real unbalanced tabular datasets with 9 classification models, SEMRes-DDPM improves the quality of the generated tabular data in terms of three evaluation metrics (F1, G-mean, AUC) with better classification performance than other SOTA oversampling methods.

Submitted: Mar 9, 2024