Paper ID: 2403.06268

Physics-Guided Abnormal Trajectory Gap Detection

Arun Sharma, Shashi Shekhar

Given trajectories with gaps (i.e., missing data), we investigate algorithms to identify abnormal gaps in trajectories which occur when a given moving object did not report its location, but other moving objects in the same geographic region periodically did. The problem is important due to its societal applications, such as improving maritime safety and regulatory enforcement for global security concerns such as illegal fishing, illegal oil transfers, and trans-shipments. The problem is challenging due to the difficulty of bounding the possible locations of the moving object during a trajectory gap, and the very high computational cost of detecting gaps in such a large volume of location data. The current literature on anomalous trajectory detection assumes linear interpolation within gaps, which may not be able to detect abnormal gaps since objects within a given region may have traveled away from their shortest path. In preliminary work, we introduced an abnormal gap measure that uses a classical space-time prism model to bound an object's possible movement during the trajectory gap and provided a scalable memoized gap detection algorithm (Memo-AGD). In this paper, we propose a Space Time-Aware Gap Detection (STAGD) approach to leverage space-time indexing and merging of trajectory gaps. We also incorporate a Dynamic Region Merge-based (DRM) approach to efficiently compute gap abnormality scores. We provide theoretical proofs that both algorithms are correct and complete and also provide analysis of asymptotic time complexity. Experimental results on synthetic and real-world maritime trajectory data show that the proposed approach substantially improves computation time over the baseline technique.

Submitted: Mar 10, 2024